Dr. Marques Sophie Office 519

Algebra 1

Spring Semester 2017 marques@cims.nyu.edu

Problem Set #3

1 Modular arithmetic

Exercise 1 : Check that gcd(k, n) = 1 and find $[k]^{-1}$ in $\mathbb{Z}/n\mathbb{Z}$ when k = 296, n = 1317.

Exercise 2: Determine $[a]^{-1}$ for each of the multiplicative units [a] = [1], [5], [7], [11] in $\mathbb{Z}/12\mathbb{Z}$.

Exercise 3 :

Identify all element in $\mathbb{Z}/18\mathbb{Z}$ that have multiplicative inverse. Find $[5]^{-1}$ in this system by finding r, s such that 5r + 18s = 1.

2 Rationals

Exercise 4 : Prove that $\sqrt{3}$ is irrational.

3 Groups/Subgroups

Exercise 5 :

Which of the following set are groups? (Explain your answer.)

- 1. $(\mathbb{Z}, \cdot);$
- 2. $(\mathbb{R}, \cdot);$
- 3. $((\mathbb{Z}/7\mathbb{Z})^{\times}, \cdot);$

Exercise 6 :

Prove that

- 1. Knowing that $(\mathbb{Z}, +)$ is a group, prove that $(\mathbb{Z}/n\mathbb{Z}, \oplus)$ is a group;
- 2. Knowing that $(\mathbb{R}, +)$ is a group, prove that $(\mathbb{R}^n, +)$ is a group;

Exercise 7:

Prove that

- 1. Prove that (Ω_n, \cdot) is a subgroup of $(\mathbb{C}^{\times}, \cdot)$, where $\Omega_n = \{z \in \mathbb{C} : z^n = 1\}$.
- 2. Prove that the orthogonal group $(O_n(\mathbb{R}) = \{M \in M_n(\mathbb{R}) : MM^T = I_n\}, \cdot)$ is a subgroup of $(GL_n(\mathbb{R}), \cdot)$.
- 3. Prove that the three-dimensional Heisenberg group of quantum mechanics consists of all real 3×3 matrices of the form

$$A = \left(\begin{array}{rrrr} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{array}\right)$$

with $x, y, z \in \mathbb{R}$ forms a subgroup of $(GL_n(\mathbb{R}), \cdot)$.

- 4. Prove that if (G, \cdot) is a group and $S \subset G$ non empty subset,
 - (a) $Z(G) = \{x \in G : gx = xg \text{ for all } g \in G\}$ is a subgroup of G;
 - (b) $Z_G(S) = \{x \in G : xs = sx \text{ for all } s \in S\}$ is a subgroup of G;
 - (c) $N_G(S)=\{x\in G: xSx^{-1}=S\,\}$ is a subgroup of G.
 - (d) If H_{α} ($\alpha \in I$) are subgroups of G, prove $H = \bigcap_{\alpha \in I} H_{\alpha}$ is also a subgroup.
- 5. Suppose $\phi : (G, \cdot) \to (G', *)$ is a homomorphism of groups, (*e* identity element of G and e' identity element of G'), prove that

$$\operatorname{Ker}(\phi) = \{x \in G : \phi(x) = e'\}$$
,

is a subgroup of G

(b)

$$\operatorname{Range}(\phi) = \phi(G) = \{\phi(x) : x \in G\}$$

is a subgroup of G'.

Exercise 8 :

Evaluate the net action of the following product of cycles :

- 1. (1,2)(1,3) in S_3 ;
- 2. (1,2)(1,3) in S_5 ;
- 3. (1,5)(1,4)(1,3)(1,2) in S_5 ;

Exercise 9:

Find the inverses σ^{-1} in S_5 :

- 1. (1,2);
- 2. (1, 2, 3);
- 3. For any cycle (i_1, i_2) with $i_1 \neq i_2$;
- 4. (i_1, i_2, \ldots, i_k) with $i_k \neq i_l$ for $k \neq l$.